

Geophysical Study in Tangi Returnee Camp, Behsud District of Nangarhar Province

By: M. Hassan Saffi, Hydrogeologist Ahmad Jawid Hydrogeologist

April 2011

Paikob-e-Naswar, Wazirabad, PO Box 208, Kabul, Afghanistan Phone: (+93) (020) 220 17 50 Mobile (+93) (0)70 28 82 32 E-mail: <u>dacaar@dacaar.org</u> Web site: <u>www.dacaar.org</u>

Table of Contents

1. Introduction	
2. Geologic setting	
3. Hydro geologic setting	5
4. Vertical Electrical sounding Survey	8
4.1. Measured field data	9
4.2, Interpreted data	11
4.3, Vertical Electrical Sounding data Graphic interpretation	12
4.3.1, Tangi 2 VES data Graphic interpretation	12
4.3.2, Tangi 3 VES data Graphic interpretation	13
Conclusion	15

Tables

Table 1, VES-1 and VES-2 measured field data (Tangi 2)	9
Table 2, VES-1 and VES-2 measured field data (Tangi 3)	10
Table 3, VES-3 and VES-4 measured field data (Tangi 3)	10
Table 4, VES -1 and VES-2 interpreted data (Tangi 2)	11
Table 5, VES -1, VES-2, VES-3 and VES-4 interpreted data (Tangi 3)	11

Figures

Fig. 1, Geology of East-Northern of Afghanistan	. 4
Fig.2, Water Table contours and water flow direction (Tangi returnee camp)	. 5
Fig.3, 1-D Geologic cross section lines and elevation contours	. 6
Fig.4, 1-D Geologic cross section (D-D)	. 7
Fig.5, 1-D Geologic cross section (F-F)	. 7
Fig.6, 3-D Geologic cross section	. 8
Fig.7, Location of Vertical Electrical Sounding	. 9
Fig. 8, VES-1 Curve	12
Fig. 9, VES-2 Curve	13
Fig. 10, VES-2 Curve	14
Fig. 11, VES-2 Curve	14
Fig. 12, VES-2 Curve	15

List of Abbreviation and Technical Terms

Roh:	Apparent Resistivity (ohm.m)
Sp:	Self Potential (mV)
Vp:	Voltage Potential (mV)
In:	Current (m A)
VES:	Vertical Electrical Sounding
DACAAR:	Danish Committee for Aid to Afghan Refugee
WASH:	Water Sanitation and Hygiene

1. Introduction

The Tangi returnee camp is located in Behsud district of Nangrahar province. This area is a narrow valley surrounded by mountains and small alluvium hills. There is not accessible surface water, therefore the groundwater is the only source of drinking water, but there is unfortunately of low potential for development drinking water due to low recharge and complex hydrogeological condition. There is an urgent need to provide drinking water for the inhabitants of this returnee camp, therefore an investigation for groundwater development was conducted. On 29-30 March 2011 DACAAR/WASH Programme performed a Vertical Electrical Sounding (VES) survey in Tangi 2 and Tangi 3 areas using Shlumberger electrodes arrangement. The field data were measured by SYSCAL Pro resistivity meter and the data interpreted by IPI2 win software. The field data, interpreted data, measured and computed resistivity curves are enclosed with this report.

2. Geologic setting

The main geologic formation of the area is:

- Early Proterozoic metamorphic rocks (gneiss, shiest, amphibolites, quartzite and marble with intercalation of intrusive rocks (diorites and granodiorites)
- Late Quaternary and recent rocks gravel sand somewhat clay cobbles and boulders.

For more information consider the Geology of North Eastern Afghanistan (Fig.1)

Fig. 1, Geology of North-Eastern Afghanistan

3. Hydro geologic setting

The Tangi area is mainly surrounded by mountains and alluvium small hills. The narrow valley is filled with sedimentary deposits (gravel, sand and somewhat clay, pebbles, cobbles and boulders). The sedimentary deposits are underlined by Proterozoic metamorphic rocks. The water table ranges from 45m to 75m. The discharge of wells is between 0.5-1.0 l/s.

A Tangi natural groundwater system is characterized by two hydrogeologic units:

- Early Proterozoic metamorphic rocks (Gneiss, shiest, amphibolites, quartzite and marble) with intercalation of intrusive rocks (diorites and granodiorites) as fracture water.
- Late Quaternary and Recent Rocks (deterital sediments, gravel sand somewhat clay cobbles and boulders)

Both aquifer systems have very poor groundwater possibility for groundwater development due to poor recharge and complex geologic and hydrogeological condition.

The geological structure and hydrogeological conditions of this area are illustrated in Fig.2, Fig.3, Fig.4, Fig.5 and Fig.6.

Fig.2, Water table contours and water flow direction (Tangi returnee camp)

Fig.3, 1-D Geologic cross section lines and elevation contours

Fig.4, 1-D Geologic cross section (D-D)

Fig.5, 1-D Geologic cross section (F-F)

Fig.6, 3-D Geologic cross section

4. Vertical Electrical sounding Survey

On 29-30 March the Vertical Electrical sounding (VES) survey was performed in Tangi 2 and Tangi 3 returnee camps where the drilled tube wells failed. Two VES surveys were performed in Tangi 2 area. The lengths (AB) of each VES electrodes spacing were 600 m.

4 VES surveys were performed in Tangi 3 area..The maximum lengths of each VES electrodes spacing were 600 m. The locations of VES are indicated in Fig.7.

Fig. 7, Location of Vertical Electrical Sounding

4.1. Measured field data

The field data were measured by SYSCAL Pro resistivity meter and the measured data are shown in Table 1, Table 2 and Table 3.

	Table 1,	VES-1 a	nd VES-2	measured	field	data	(Tangi	2
--	----------	---------	----------	----------	-------	------	--------	---

	-						. `.		,					
VES-	/ES-1 Tangi 2							VES-2	2 Tang	ji 2				
40.0	MNO	Rho	Sp	Vp	In	K		40.0	MNO	Rho	Sp	Vp	In	К
AD/Z	MIN/Z	(ohm.m)	(mV)	(mV)	(mA)	(m)		AD/Z	MIN/Z	(ohm.m)	(mV)	(mV)	(mA)	(m) —
1.5	0.5	211.652	6.8	528.378	15.679	13.7		1.5	0.5	178.74	5.5	2865.796	100.742	13.7
2	0.5	217.908	8.6	397.518	21.491	24.7		2	0.5	229.37	28.7	1492.828	76.675	24.7
3	0.5	216.227	9.6	222.812	28.325	56.2		3	0.5	267.66	22.8	294.255	30.221	56.2
4	0.5	240.32	6.4	200.535	41.29	100		4	0.5	256.56	14.2	182.824	35.26	100
5	0.5	246.795	4.2	69.592	21.927	157		5	0.5	253.68	15.6	149.475	45.814	157
6	0.5	218.049	3.5	42.631	21.958	226		6	0.5	235.71	12.9	77.11	36.742	226
8	0.5	271.304	2.1	39.562	29.207	402		8	0.5	200.12	15.9	42.457	42.49	402
8	2	190.339	12.6	82.605	20.419	99		8	2	172.74	20.6	159.997	43.648	99
10	2	153.998	12.7	26.871	13.155	156		10	2	134.98	43.8	81.604	45.582	156
12	2	114.12	13.1	9.371	9.021	225		12	2	109.34	47.6	31.451	31.627	225
15	2	74.726	14.1	4.917	11.439	352		15	2	75.27	47.3	22.413	51.683	352
20	2	43.88	16.1	3.182	22.549	627		20	2	35.47	45.1	2.358	20.676	627
20	5	43.755	61.5	8.451	22.772	247		20	5	44.54	20.5	7.898	20.89	247
25	5	30.7	44.8	1.73	10.642	389		25	5	28.26	48.4	2.691	17.95	389
- 30	5	22.443	40.6	0.981	12.003	562		- 30	5	22.48	48.6	2.763	33.777	562
40	5	20.475	33.4	1.042	25.113	1001		40	5	18.67	44.6	0.974	25.808	1001
50	10	23.125	26.7	0.156	5.82	778		50	10	20.51	61.1	1.071	19.68	778
50	10	21.186	15.1	0.347	5.794	778		50	10	22.77	58.8	1.431	34.542	778
60	10	28.571	18.3	0.435	8.491	1123		60	10	28.89	49.6	1.246	42.69	1123
80	10	38.131	22.1	2.328	58.797	2003		80	10	49.02	34.9	2.818	89.395	2003
100	10	45.77	23	1.135	36.893	3134		100	10	40.84	18	0.913	50.218	3134
120	10	48.188	22.1	0.315	14.028	4516		120	10	37.99	16.2	2.27	51.722	4516
120	25	52.198	63.7	0.92	15.176	1790		120	25	44.16	17.3	0.75	23.349	1790
150	25	57.589	70.1	0.958	22.861	2808		150	25	70.91	13.3	0.14	4.873	2808
200	25	71.17	62.5	0.979	33.536	5007		200	25	45.24	7.6	0.374	20.464	5007
250	25	89.00	53.8	0.625	27.433	7834		250	25	42.67	7.4	0.353	32.135	7834
300	25	105	46.7	0.734	38.837	11290		300	25	39.276	7.4	0.353	32.135	11290

VES-1 Tangi 3									
ADO	MNO	Rho	Sp	Vp	In	ĸ			
AD/Z	MIN/Z	(ohm.m)	(mV)	(mV)	(mA)	(m)			
1.5	0.5	240.998				13.7			
2	0.5	262.814				24.7			
3	0.5	281.683				56.2			
4	0.5	292.068				100			
5	0.5	324.536				157			
6	0.5	349.108				226			
8	0.5	344.697				402			
8	2	362.448				99			
10	2	316.228				156			
12	2	247.974				225			
15	2	160.5454				352			
20	2	76.91				627			
20	5	88.545				247			
25	5	50.982				389			
30	5	32.619				562			
40	5	22.831				1001			
50	10	17.4				778			
50	10	19.362				778			
60	10	19.2				1123			
80	10	17.814				2003			
100	10	13.511				3134			
120	10	13.67				4516			
120	25	17.356				1790			
150	25	14.553				2808			
200	25					5007			
250	25					7834			
300	25					11290			

Table 2, VES-1 and VES-2 measured field data (1	Tangi 3,)
---	----------	---

VES-2 Tangi 3									
		Rho	Sp	Vp	In	ĸ			
AB/Z	MN/Z	(ohm.m)	(mV)	(mV)	(mA)	(m)			
1.5	0.5	295	60.1	1013.657	21.567	13.7			
2	0.5	315.333	71.6	489.704	18.296	24.7			
3	0.5	351.067	64.9	355.508	27.837	56.2			
4	0.5	348.111	65.8	61.844	8.785	100			
5	0.5	349.807	67.8	98.545	21.905	157			
6	0.5	335.25	69.1	43.721	14.644	226			
8	0.5	260.383	68.4	36.531	28.106	402			
8	2	270.96	0.9	147.383	25.625	99			
10	2	224.359	9.8	66.159	22.241	156			
12	2	181.83	24.2	31.004	18.773	225			
15	2	119.121	29.6	25.775	37.374	352			
20	2	62.52	33.1	2.424	12.079	627			
20	5	71.629	8.5	7.334	12.029	247			
25	5	46.369	17.6	5.031	20.507	389			
- 30	5	29.139	22.4	1.828	17.3	562			
40	5	21.118	24.4	2.272	53.603	1001			
50	10	20.478	24.2	0.637	24.376	778			
50	10	20.743	39.6	1.375	25.063	778			
60	10	21.179	39.2	1.375	36.323	1123			
80	10	19.811	33.4	0.186	9.254	2003			
100	10	15.421	21.8	0.072	7.97	3134			
120	10	19.924	14	0.369	43.351	4516			
120	25	17.844	68.8	0.915	43.669	1790			
150	25	23.175	93.6	0.566	34.103	2808			
200	25					5007			
250	25					7834			
300	25					11290			

Table 3, VES-3 and VES-4 measured field data (Tangi 3)

VES-3 Tangi 3									
ADO	MNO	Rho	Sp	Vp	In	ĸ			
AD/Z	MIN/Z	(ohm.m)	(mV)	(mV)	(mA)	(m)			
1.5	0.5	228.5	66.7	1875.62	51.547	13.7			
2	0.5	272.447	42.8	1015.04	43.892	24.7			
3	0.5	367	45.3	250.59	18.757	56.2			
4	0.5	355.074	38.7	70.368	9.806	100			
5	0.5	339.707	36.5	74.891	17.141	157			
6	0.5	230.811	34.8	13.754	4.819	226			
8	0.5	357.77	33.2	15.81	12.995	402			
8	2	210.964	37.4	60.877	13.595	99			
10	2	175.51	15	36.799	15.816	156			
12	2	146.477	3.7	22.447	16.851	225			
15	2	98.513	4.8	9.398	16.566	352			
20	2	51.292	9.9	4.825	29.28	627			
20	5	58.823	71.4	15.19	30.411	247			
25	5	39.575	65.5	2.867	13.647	389			
- 30	5	25.476	59.2	1.427	15.174	562			
40	5	17.48	54	0.249	6.644	1001			
50	10	18.915	48.8	0.286	12.432	778			
50	10	19.768	107	0.679	13.035	778			
60	10	19.5	103	0.267	7.689	1123			
80	10	18.93	99.9	0.113	6.008	2003			
100	10	17.125	94.1	0.322	27.967	3134			
120	10	18.58	82.6	0.159	20.12	4516			
120	25	16.329	87	0.381	20.175	1790			
150	25	19.912	61.8	0.206	14.213	2808			
200	25					5007			
250	25					7834			
300	25					11290			

VES-4 Tangi 3									
AD (2)	MND	Rho	Sp	Vp	In	к			
AD/Z	MIN/Z	(ohm.m)	(mV)	(mV)	(mA)	(m)			
1.5	0.5	317.365	46.4	1169.609	23.155	13.7			
2	0.5	340	39.2	784.593	27.179	24.7			
3	0.5	370.789	45.5	93.784	6.953	56.2			
4	0.5	387	42	178.723	22.819	100			
5	0.5	374.869	43	61.62	12.816	157			
6	0.5	353.279	42.4	65.343	20.766	226			
8	0.5	316.502	36.2	24.103	14.197	402			
8	2	317.16	17.9	59.701	8.87	99			
10	2	245.304	35.1	55.44	16.998	156			
12	2	194.134	33.5	93.658	53.044	225			
15	2	126.501	32.8	7.663	10.478	352			
20	2	65.289	32.9	7.02	33.311	627			
20	5	76.119	21.2	21.996	34.107	247			
25	5	43.577	23.2	4.084	17.652	389			
- 30	5	30.417	24.1	3.414	30.899	562			
40	5	21.494	24.7	1.431	32.861	1001			
50	10	19.309	25.1	1.033	41.86	778			
50	10	20.129	52.9	2.222	41.732	778			
60	10	17.763	44.9	1.112	33.891	1123			
80	10	18.514	36.6	0.953	51.371	2003			
100	10	16.738	28	0.209	19.518	3134			
120	10	13.22	20.7	0.047	7.758	4516			
120	25	14	3.9	0.075	4.511	1790			
150	25	18.99	8	0.095	6.869	2808			
200	25	20.43	8.2	0.106	12.642	5007			
250	25	20.42	6.2	0.054	9.426	7834			
300	25	21.43	6.5	0.05	14.257	11290			

4.2 Interpreted data

The measured field data were interpreted by IPI2 win software. The interpreted data was used to calculate apparent resistivity, thickness, depth and boundaries of layers of rocks. The interpreted data are shown in Table 4 and Table 5.

No	Site and	Vertical Electrical Resistivity Survey in Tangi 2				Converging of evidences and geological
	Direction of	Арр-	Layer	Thickness	Depth	interpretation
	Surveying	Resistivity		(m)	(m)	
		(Ohm-m)				
1	VES -1	203	1	2.05	2.05	Dry Sand, Gravel
	Tangi -2	671	2	1.53	3.58	Dry Sand, Gravel, Bolder and somewhat silt clay
						and clay
	Lat: 34.49716	15.2	3	30.3	33.9	Sand and Gravel (Poor aquifer)
	Lon: 70.35748	268	4		>33.9	Metamorphic Rock (Probably Fracture water)
2	VES -2	120	1	0.75	0.75	Dry Sand, Gravel
	Tangi -2	430	2	0.406	1.16	Dry Sand, Gravel
	Lat: 34.49774	134	3	5.14	6.3	Gravel, Boulder , Pebble (Dry)
	Lon: 70.53721	10.1	4	55	61.3	Sand and Gravel (Poor aquifer)
		434	5	12	71.3	Weathered deposits (Poor aquifer)
		450	6		>71.3	Metamorphic Rock (Probably Fracture water)

Table 4, VES -1 and VES-2 interpreted data (Tangi 2)

Table 5, VES -1, VES-2, VES-3 and VES-4 interpreted data (Tangi 3)

Ν	Site and Direction	Vertical Electrical Resistivity Survey in Tangi 3				Converging of evidences and geological
0	of Surveying	Арр-	Layer	Thicknes	Depth	interpretation
		Resistivity		S	(m)	
		(Ohm-m)		(m)		
1	VES -1	378	1	1.68	1.68	Dry Sand, Gravel
	Tangi -3	1963	2	1.72	3.39	Dry Sand, Gravel, Bolder and somewhat silt clay
	Lat: 34.50367					and clay
	Lon: 70.53532	27.3	3	45.6	49	Sand and Gravel (water level)
		10.3	4		>49	Weathering sediments (poor aquifer)
2	VES -2	277	1	0.75	0.75	Dry Sand and Gravel
	Tangi -3	444	2	4.63	5.38	Dry Sand, Gravel, Bolder and somewhat silt clay
	Lat: 34.50356					and clay
	Lon: 70.53527	19.8	3	37.7	43.1	Sand and Gravel (water level)
		4.37	4	22.7	65.7	Weathering Sediments (poor aquifer)
		1672	5		>65.7	Metamorphic Rocks(probably fracture water)
3	VES -3	110	1	0.75	0.75	Dry Sand and Gravel
	Tangi- 3	297	2	4.7	5.45	Dry Sand, Gravel, Bolder and somewhat silt clay
	Lat: 34.50303					and clay
	Lon: 70.53580	14.8	3	113	139	Sand and Gravel (poor aquifer)
		2802	4		>139	Metamorphic Rocks
4	VES -4	349	1	0.821	0.821	Dry Sand and Gravel
	Tangi-3	612	2	4.41	5.23	Dry Sand, Gravel, Bolder and somewhat silt clay
	Lat: 34.50367					and clay
	Lon: 70.53544	24.3	3	27.9	33.1	Sand and Gravel
		11	4	38.5	71.6	Sand and Gravel somewhat silt
		26.6	5		>71.6	Sand and Gravel (poor aquifer)

4.3, Vertical Electrical Sounding data Graphic interpretation

The VES data (Apparent resistivity versus Electrodes distance) were interpreted by IPI2 win software as well as manually. The boundaries, thickness and depth of rocks layers were determined according to the measured and computed apparent resistivity and geo electrical model (Table 2). The rock types were specified according to the computed apparent resistivity based on the geophysical interpretation principles (Table 2)

4.3.1, Tangi 2 VES data Graphic interpretation

Two VES (VES-1 and VES-2) surveys were performed in Tangi 2. The measured, computed apparent resistivity and geo electrical curves show: upper parts of the rock layers consist of dry sand, gravel and somewhat silt, clay, pebbles, cobbles and boulders; the middle parts of rocks layer consist of sand and gravel; and the lower parts of rock layers consist of weathered deposits and metamorphic rocks. The water table ranges from 50m to 65 m. The possibility of groundwater is increased from the south to the north. The thickness of sedimentary aquifer is very low and has poor groundwater. For more information refer to Table 1, Table 4, Fig. 8 and Fig.9.

Fig. 8, VES-1 Curve

Fig. 9, VES-2 Curve

4.3.2, Tangi 3 VES data Graphic interpretation

4 VES surveys (VES-1, VES-2, VES-3 and VES-4) were performed in Tangi 3. The measured and computed apparent resistivity and geo electrical curves show: upper parts of the rock layers consist of dry sand, gravel and somewhat silt, clay, pebbles, cobbles and boulders; the middle parts of rocks layer consist of sand and gravel; and the lower parts of rock layers consist of weathered deposits and metamorphic rocks. The water table ranges from 40m to 55 m. The possibility of groundwater is increased from the north-west to the north-east. The thickness of sedimentary aquifer ranges from 25m to 40m and has poor groundwater. Tangi 3 has relatively better groundwater development possibility than Tangi 2. For more information refer to Table 2, Table 3, Fig. 10, Fig.11 and Fig.12.

Fig. 10, VES-2 Curve

Fig. 11, VES-2 Curve

Fig. 12, VES-2 Curve

Conclusion

- 1. In Tangi 2, the measured apparent resistivity, computed resistivity and geo electrical model data interpretation show:
 - The water table ranges from 50m to 65m.
 - The possibility of groundwater is increased from the south to the north.
 - The aquifer media is sedimentary deposits and metamorphic fractured rocks.
 - The thickness of sedimentary aquifer is very low and has poor groundwater.
 - The tube wells should be drilled 50m south of the failed drilled tube wells.
 - The maximum drilling depth of well should be 120m.
- 2. In Tangi 3, the measured apparent resistivity, computed resistivity and geo electrical model data interpretation show:
 - The water table ranges from 40m to 55m.
 - The possibility of groundwater is increased from the north-west to the north-east.
 - The aquifer media is sedimentary deposits and metamorphic fractured rocks
 - The thickness of sedimentary aquifer is very low and has poor groundwater.
 - The tube wells should be drilled to the north of the failed drilled tube wells.
 - The maximum drilling depth of well should be 120m.